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ABSTRACT

Logistic regression is often used for the classification of a binary categorical dependent 
variable using various types of covariates (continuous or categorical). Imbalanced data will 
lead to biased parameter estimates and classification performance of the logistic regression 
model.  Imbalanced data occurs when the number of cases in one category of the binary 
dependent variable is very much smaller than the other category.  This simulation study 
investigates the effect of imbalanced data measured by imbalanced ratio on the parameter 
estimate of the binary logistic regression with a categorical covariate. Datasets were 
simulated with controlled different percentages of imbalance ratio (IR), from 1% to 50%, 
and for various sample sizes. The simulated datasets were then modeled using binary logistic 
regression. The bias in the estimates was measured using MSE (Mean Square Error). The 
simulation results provided evidence that the effect of imbalance ratio on the parameter 
estimate of the covariate decreased as sample size increased. The bias of the estimates 
depended on sample size whereby for sample size 100, 500, 1000 – 2000 and 2500 – 3500, 

the estimates were biased for IR below 30%, 
10%, 5% and 2% respectively. Results also 
showed that parameter estimates were all 
biased at IR 1% for all sample size.  An 
application using a real dataset supported 
the simulation results. 

Keywords: Categorical covariate, imbalanced data, 
logistic regression, parameter estimates, predictive 

analytics, simulation 
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INTRODUCTION

Imbalanced data are a condition where the dependent variable contains one class which 
has more observations than the other. Imbalanced data will have prominent effect on the 
classification performance of classifiers such as logistic regression, decision trees, support 
vector machine (SVM) and artificial neural network (ANN). Imbalanced data also affects 
the classification “power” of various classifiers. The effect of imbalanced data has been 
reported by researchers through the application of real data sets (Blagus & Lusa, 2010; 
Longadge et al., 2013; Ramyachitra & Manikandan, 2014). 

Logistic regression (LR) is frequently used in predictive modeling as a benchmark 
model when other classifiers’ performances were evaluated. It is a conventional statistical 
model used widely in business, engineering, and social science research  (Hamid, 2016 ; 
Hamid et al., 2018; Ahmad et al., 2011; Shariff et al., 2016; Yap et al., 2014), and medical 
and healthcare studies (Longadge et al., 2013; Mena & Gonzalez, 2006; Oztekin et al., 
2009; Pourahmad et al., 2011; Rothstein, 2015; Roumani et al., 2013; Srinivasan & 
Arunasalam, 2013; Uyar et al., 2010). However, the presence of imbalanced data challenges 
LR’s ability to classify, whereby majority of classifiers normally focus in the prediction 
without consideration on the relative distribution between the classes (Dong et al., 2014). 
Normally, when imbalance data are present, classification results from standard classifiers 
are biased towards the majority class. As a result, if the event of interest is the minority 
class, the sensitivity of the classifier will be zero and the specificity will be 100%. The  
real dataset in reality often suffers from some imbalance problem (Goel et al., 2013) and 
the minority class is often misclassified (Chawla et al., 2004; He & Garcia, 2009; Weiss 
& Provost, 2003). Thus, whenever imbalance problem is found in healthcare and medical 
datasets, the credibility of the models generated by the classifiers are often misleading.  

Imbalanced problem affects standard classifiers  (Chawla, 2003; Cohen et al., 2006; 
Galar et al., 2011) and logistic regression based on application to  real datasets studies 
(Blagus & Lusa, 2010; Burez & Van den Poel, 2009; Mena & Gonzalez, 2006; Van 
Hulse et al., 2007). In our previous study, we performed simulation to study the impact 
of imbalanced ratio (IR) on LR parameter (β) estimates and the odds ratio (eβ) of the LR 
model using a continuous covariate (Rahman & Yap, 2016). The results provided enough 
evidence to conclude that extreme imbalanced ratio (IR = 1%, 2%, 5%) and small sample 
size have more serious effect on parameter estimates of LR model. Imbalanced ratio is 
the ratio of the number of cases in minority class to the majority class. For example, if the 
response variable is the presence of cancer and has two categories Cancer or No Cancer  
the imbalanced ratio is n1/n0, where n1 is the number of patients diagnosed with cancer 
while n0 is the number of patients who do not have cancer.

The effect of imbalanced data on the performance of the classifiers can be determined 
through simulation studies. In addition, the various types (categorical or continuous) of 
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variables in a set of data might show different effects. In this simulation study, we focus 
on the logistic regression model, a useful statistical model for classification problem and 
investigate the imbalanced effects on the parameter estimate of the model with a single 
categorical covariate. 

The aim of this study was to determine the effects of different IR on the logistic 
regression parameter estimate via simulation and an application to real dataset. The 
results of this study will guide practitioners on the severity of bias in estimates as a result 
imbalanced data. 

MATERIALS AND METHOD

Review on Methods

Machine learning techniques i.e. LR, DT, ANN and SVM, may have great classification 
performance if it involves a balanced data. However, these techniques performs poorly 
when imbalanced problem arises (Anand et al., 2010).  

Most studies concluded that there was an effect of IR towards the performance of 
standard classifiers (Rahman et al., 2012; Chawla, 2003; Lemnaru et al., 2012; Mena & 
Gonzalez, 2006; Prati et al., 2014; Van Hulse et al., 2007; Yap et al., 2014). A study by Mena 
and Gonzalez (2006) introduced a 3-step algorithm using simple LR called REMED (Rule 
Extraction Medical Diagnosis) which enabled users to select attributes for the model and 
improved the accuracy of the model by adjusting the percentage of the partition. Although 
REMED’s algorithm claimed to improve the prediction accuracy, it is limited to medical 
diagnostics. Lemnaru et al. (2012) reported that IR, size and complexity of the dataset 
affects the predictive performance of different classifiers [(k-nearest neighbor (KNN), 
C4.5, SVM, multi-layered perceptron (MLP), Naïve Bayes (NB), and Adaboost (AB)]. In 
their extensive study, the IR was categorized into three categories (balance, small, large), 
four categories of dataset size (very small, small, medium, and large) and four categories 
of complexity of the dataset (small, medium, large and very large). They concluded that 
the performance of the classifiers was lower when the IR was high.  Another extensive 
experiment performed by Van Hulse et al. (2007), using different sampling strategies 
(random oversampling (ROS), random undersampling (RUS), one-sided selection (OSS), 
cluster-based oversampling (CBOS), Wilson’s editing (WE), SMOTE (SM), and borderline-
SMOTE (BSM) on different classifiers (NB, DT C4.5, LR, random forest (RF), and SVM) 
on 35 real datasets with different ratio of imbalance (1.33% - 34.90%), concluded that 
sampling strategy improved the performance of the chosen classifiers. However, their study 
also concluded that there was no one universal sampling strategy that worked best for all 
classifiers. Chawla (2003) experimented on five real datasets using C4.5 as the classifier 
and reported that their synthetic sampling method, SMOTE, improved the performance of 
the classifier better than other sampling strategies. He also concluded that RUS was  better 
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than ROS with replication. Prati et al. (2014) also experimented on 22 real datasets with 
different IR on different classifiers (C4.5, C4.5Rules, CN2 and RIPPER, Back-propagation 
Neural Network, NB and SVM) and by using different sampling strategies (ROS, SMOTE, 
borderline-SMOTE, AdaSyn, and MetaCost). They concluded that in terms of accuracy 
(AUC), the rule-based algorithm (C4.5Rule, RIPPER) was the most affected while Support 
Vector Machine (SVM) was least affected by imbalanced data. However, the authors also 
stated that severe imbalanced class distributions would have a strong influence on SVM 
and any classifier for that matter. 

Thus, in a nutshell, we can conclude that the predictive performance of different 
standard classifiers compared by the mentioned studies arrived at different conclusions as to 
which classifier and sampling strategies performed better (Blagus & Lusa, 2010; Lemnaru 
et al., 2012; Mena & Gonzalez, 2006; Prati et al., 2014; Sarmanova & Albayrak, 2013). 

In classification and predictive analytics, LR is normally considered a very informative 
classifier as it provides important information about the effect of an independent variable 
(IV) on the dependent variable (DV) through the odds ratio (Hosmer & Lemeshow, 
2004). However, the presence of imbalanced problem hinders the predictive “power” of 
LR (Wallace & Dahabreh, 2012). Blagus & Lusa (2010) performed a simulation study to 
evaluate the performance of six types of classifiers (ANN, Linear Discriminant Analysis 
(LDA), RF, SVM and penalized logistic regression (PLR)) on highly imbalanced data. 
However, their results showed that the PLR with ROS method, failed to remove the biasness 
towards the majority class. 

 A simulation study by Hamid et al. (2015) discovered that when sample size was large 
(at least 500) the parameter estimates accuracy for LR improved. In addition, the estimation 
of LR parameters is severely affected by types of covariates; either continuous, categorical, 
or count data. Simulation studies, usually, enables us to provide a more conclusive evidence 
on the effect of IR, as the simulated datasets were mold perfectly to cater specific problem 
types. In our previous study (Rahman & Yap, 2016), our results were consistent  with the 
study by Hamid et al., 2015, which reported that the performance of LR is affected by 
sample size. However, Hamid et al. (2015) did not consider imbalanced data.  Simulation 
studies are important to obtain empirical evidence on the impacts of IR on the estimate of 
logistic regression parameter, β -value and the odds ratio of the LR model. 

Simulation Methods

This study considered a simple binary logistic regression (LR). In the LR model, two 
unknown parameters, 10  and ββ , are estimated using the maximum likelihood method. 
Assuming observations to be independent, the likelihood function is given by the following 
Equation 1 (Hosmer & Lemeshow, 2004):
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To estimate 10  and ββ , the maximization of the likelihood function is required. 
Therefore, the maximization of the natural logarithm of the likelihood function is denoted 
by the following Equation 2:
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By referring to the simple LR Equation 1, the Equation 2 can also be expressed as 
Equation 3 (Hosmer & Lemeshow, 2004):
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By differentiating [ ])(log 1,0 ββL  with respect to 10  and ββ  and setting the resulting 
Equation 4 to zero, we can obtain β  that maximizes Equation 3. 
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The maximum likelihood estimates of 10  and ββ , are denoted by 0β̂ and 1β̂ and is 
obtained using Newton -Raphson method.  The probability that the event occurs, )( ixπ
for case i is then obtained as Equation 5:
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In addition, )(ˆ ixπ  is also known as fitted or predicted value and the sum of )(ˆ ixπ is 
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We assessed the effect of various percentages of IR and sample size on estimation 
of the parameter coefficient, β  for binary LR model with one categorical independent 
variable. The estimate, 1

ˆ β  were compared with the true 1 β  value. The simulations were 
performed using R-Studio. The value of the regression coefficient ( 0β )  for the logistic 
model was set at 2.08 which gave a significant odds ratio (OR) of 8.004 for X (OR = e2.08 = 
8.004). The R code developed for this simulation is available at https://github.com/hezlin/
simulationx1cat.git. It is also provided in the Appendix. 

Odds-ratio provide important information of the effect of the covariate on the event 
(dependent variable). Given a binary Y(1=Died, 0=Survived)  and a categorical covariate 
X(Hypertension-HPT) with two categories (1=Yes and 0=No), an odds-ratio of 1 will 
indicate both patients with or without HPT has equal chance of Y=1 (Died). Meanwhile, 
an odds-ratio greater than 1 will indicate that patients with HPT are more likely to die, and 
if odds-ratio is less than 1, patients with no HPT are more likely to die.   

Eight imbalance ratios were considered for this simulation study: 1%, 2%, 5%, 10%, 
20%, 30%, 40%, and 50%. Imbalance ratio (IR) is the percentage of occurrence of minority 
class between the two predictor classes. For example, in this simulation, if we generated a 
dataset N=100, if the IR = 1% means that 1 out of 100 has y=1 and the rest 99 out of 100 
has y=0. The IR 5% or less represents high IR in the response variable. However, due to the 
complexity of generating the simulated dataset, especially for fixing definite percentages 
of IR, the simulation model required 0β  values to be flexible for different IR ratio. Thus, 
the full LR model used for this study is denoted as Equation 8:
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where β  is determined by the IR and is not fixed at one value.
The data for the covariate (X) considered in this study were generated using a binomial 

distribution, Bin (n= sample size, p=0.5). We considered sample size of 100, 500, 1000, 
1500, 2000, 2500, 3000, 3500, 4000, 4500, and 5000. This simulation study involved 
10,000 replications. The simulation algorithm is as follows:

Step 1: Generate random data for the categorical covariate X, for sample size, n and 
imbalance ratio, IR.

Step 2: Set β  at 2.08 and obtain kk xxf 10 08.2)( += β , where k = 1, 2, … 10,000.  
is not fixed to create a fix percentage of imbalance accordingly, whereby the confidence 
interval of kk xxf 10 08.2)( += β  is set within the range of (-2, 10).

Step 3: Fit binary logistic regression to the generated data in Step 2.

Step 4: Obtain the parameter estimate, β̂ .



Predictive Performance for Imbalanced Categorical Covariate

187Pertanika J. Sci. & Technol. 29 (1): 181 - 197 (2021)

Step 5: Repeat Steps 1-4 for 10,000 replications.

Step 6: Calculate the MSE where 
000,10

)ˆ( 2
10000

1
∑
=

−
= iMSE

ββ

Repeat Steps 1 – 6 for different sample size and imbalanced ratio. 

RESULTS AND DISCUSSION

Simulation Results 

Table 1 presents the simulation results for the LR parameter estimates for various sample 
sizes and IR. %.). The effect of IR was reduced when sample size increased. The results 
showed that the estimates for 10 ββ  and were very far from the true parameter values for 
smaller sample size (n=100) and for IR 1%, 2%, 5%, 10%, 20% and 30%. The bias in 
estimate was clearly seen for IR 20% or less for n=500. Meanwhile, for n=1000, the bias 
was seen for IR 10% or less. However, the effect of IR was less for sample size more than 
3000 and above was only affected by IR of 1% and 2%.  Table 2 summarizes the findings.

Figure 1 presents the effect of sample size and IR on the parameter estimate values. It 
clearly shows the parameter estimates was biased for IR 30% and below for n=100. The 
Figure 1 also shows that for all sample sizes, the estimate was close to the true parameter 
values at IR=30% and above. In Figure 2, we focused on high IR, 1% to 10% and omitting 
20% to 50% so that visualization of the effect is clearer. The Figure 2 shows threshold 
of effect of IR decreases as sample size increases. For example, estimates are biased for 
n=500 for IR 5% and below, while for n=1000, estimates are biased at IR % and below. 
When estimates are biased the MSE will be larger. Figure 3 illustrates the effect of IR 
and sample size through the MSE and Figure 4 further emphasizes results in Figure 3 by 
focusing on the IR of 1% to 10%, by omitting the 20% to 50% ratios. In Figure 3, the 
effect of imbalance is less (lower MSE) at IR=30%, similar to the illustration in Figure 1. 
Further focusing on highly imbalanced ratios, Figure 4 illustrates that the MSE values are 
the largest for small sample sizes (n=100 and n=500). 

Figures 5 and 6 illustrate the effects of imbalanced using a clustered boxplot. As shown 
in Figure 5, the effect of imbalanced data is obvious for sample size n=500 (IR=1% and 
2%) and n=1000 (IR=1%). In Figure 6, we omit the imbalanced ratio 1% and 2%, and 
now there are no huge spikes in the boxplots. Figures 5 and 6 clearly showed the effect 
of IR for various sample sizes, whereby the patterns show that the effect of IR on the bias 
of parameter estimates depend on sample size. The estimates get closer to the true value 
when the sample size and IR increases. The dispersion (standard deviation) of 1β̂  also 
improves as sample size and IR increases. 
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Table 2 
Summary of findings on the effect of IR and associated sample size

Sample Size Estimates biased if IR is
100 30% and below
500 10% and below
1000 – 2000 5% and below
2500 – 3500 2% and below
4000 and above 1% and below

Figure 1. Categorical covariate’s parameter estimates, 1β̂ , for different sample size and imbalance ratio 
(Imbalance Ratio (IR): 1% to 50%). 

Figure 2. Categorical covariate’s parameter estimates, 1β̂ , for different sample size and highly imbalance 
ratio (IR : 1-10%).
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Figure 3. Mean square error (MSE) of categorical covariate’s parameter estimates, 1β̂ , for different sample 
sizes and imbalance ratio

Figure 4. Mean square error (MSE) categorical covariate’s parameter estimates, 1β̂  , for different sample 
size and highly imbalance ratio (IR : 1-10%).
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Figure 5. Clustered boxplots of 1β̂ for a categorical covariate

Figure 6. Clustered boxplots for 1β̂ for a categorical covariate (omit IR=1%, 2%)

Clustered Boxplot: BetaHat for Categorical Covariate

Clustered Boxplot: BetaHat for Categorical Covariate (Omit IR=1%, 2%)
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Hence, by referring to all the figures (Figures 1 to 6), it can be concluded that the effect 
of the imbalanced problem on the categorical covariate’s parameter estimation was most 
severe for smaller sample sizes (n ≤ 500) and for highly imbalanced ratios (IR ≤ 5%). The 
severity of the imbalanced problem was identified by the difference between the parameter 
estimated values and the fixed true beta value (β1=2.08), as well as larger value of MSE. 
MSE is a good indicator of the bias in parameter estimates of the model. A larger MSE 
will indicate estimates are biased.

From this simulation results, the effect of IR for small sample size was very prominent 
with large MSE. Even for larger sample size (n=1000 and 1500), the effect of imbalance 
towards the parameter estimation was still apparent. For small sample size, n=100, only at 
IR = 30% onwards the value of the estimates became closer to the actual parameter value. 
Sample size n=500, the estimates improve at IR = 10% onwards. For other sample sizes 
1000≤n≤2000, 2500≤n≤3500 and n≥4000, the parameter estimation improved at IR = 5%, 
2% and 1% onwards. The summary of these findings is shown in Table 2.

Application to Real Data Results 

This section illustrates and application using a real medical dataset (Diabetes Messidor 
dataset) from the UCI repository which has 16 covariates and known as “The Diabetes 
Messidor” dataset (Antal & Hajdu, 2014), consists of 1151 observations. This dataset 
contains features extracted from the Messidor image set to predict whether an image 
contains signs of diabetic retinopathy or not (DR status). All features represent either a 
detected lesion, a descriptive feature of an anatomical part or an image-level descriptor. 
The two categorical covariates selected for this illustration are the retinal abnormality and 
AMFM status. We modeled the binary dependent variable, DR status (1=with DR (53%) 
and 0=without DR (47%)). We used retinal abnormality (1 = yes, 0 = no) and AMFM 
status (0 = AM, 1 = FM) as the independent variable in Model 1 and Model 2 respectively. 
Using stratified sampling on the original dataset, we obtained the IR percentage as shown 
in Table 3. 

Results in Table 3 show that the estimate 1β̂  in Model 1 was affected for IR 5% 
and below. The p-values for 1β̂  increases (leading to independent variable becoming 
insignificant) as imbalance becomes more severe thus leading to misleading results.  
Results of Model 2 shows the effect of imbalance on odds-ratio. The odds-ratios were 
extremely large at IR 1% and 2%. This application to real dataset confirmed the results of 
the simulation study, which strengthened the conclusion that imbalanced problem will be 
misleading on the effect of the independent variable on the response variable.
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Table 3  
Effect of imbalanced with application to real dataset (Diabetes Messidor)

Independent 
Variable Data/ IR  0β̂ , [p-value]

C.I (lower, upper)
1̂β , [p-value]

C.I (lower, upper)
Odds-Ratio (OR)

C.I (lower, upper)

Retinal 
Abnormality

(1 = yes, 0 = no)

Original
(540:611)

0.6614, [0.002]
(0.6613, 0.6614)

-0.5838, [0.010]
(-0.5837, -0.5838)

0.5578
(0.5577, 0.5578)

40% 
(407:611)

0.9477, [0.000]
(0.9414, 0.9539)

-0.5872, [0.026]
(-0.5938, -0.5805)

0.5591
(0.5554, 0.5626)

30% 
(261:611)

1.4151,[ 0.000]
(1.4033, 1.427)

--0.6110, [0.075]
(-0.6236, -0.5983)

0.5537
(0.5470, 0.5604)

20% 
(152:611)

1.9717,[ 0.000]
(1.9527, 1.9906)

-0.6262, [0.178]
(-0.6462, -0.6062)

0.5609
(0.5506, 0.5712)

10% 
(68:611)

2.9467,[ 0.007]
(2.8593, 3.0342)

-0.7962, [0.345]
-0.8846, -0.7078)

0.5700 
(0.5528, 0.5871)

5%
(35:611)

4.6431,[ 0.080]
(4.3845, 4.9016)

-1.8264, [0.502]
-2.0863, -1.5664)

0.5920 
(0.5680, 0.6159)

2%
(13:611)

10.5126, [0.418]
(10.0310, 10.9941)

-6.7028, [0.806]
(-7.1881, -6.2176)

0.6347 
(0.5902, 0.6792)

1%
(7:611)

13.9315, [0.631]
(13.4669, 14.3960)

-9.5009, [0.856]
(-9.9711, -9.0306))

0.6799 
(0.6137, 0.7461)

AMFM status
(1 = FM, 0 = 

AM)

Original 
(540:611)

0.1837, [0.011]
(0.1836, 0.1837)

-0.1785, [0.153]
(-0.1784, -0.1785)

0.8364 
(0.8364, 0.8365)

40% 
(407:611)

0.4669, [0.000]
(0.4657, 0.4680)

-0.1787, [0.219]
(-0.1820, -0.1754)

0.8375
(0.8348, 0.8403)

30% 
(261:611)

0.9124, [0.000]
(0.9104, 0.9143)

-0.1804, [0.307]
(-0.1860, -0.1750)

0.8381
(0.8335, 0.8428)

20% 
(152:611)

1.4515, [0.000]
(1.4483, 1.4548)

-0.1721, [0.404]
(-0.1811, -0.1630)

0.8510
(0.8432, 0.8587)

10% 
(68:611)

2.2623, [0.000]
(2.2570, 2.2677)

-0.1785, [0.451]
(-0.1934, -0.1635)

0.8615 
(0.8480, 0.8749)

5% 
(35:611)

2.9268, [0.000]
(2.9193, 2.9343)

-0.1601, [0.480]
(-0.1816, -0.1387)

0.9061
(0.8850, 0.9272)

2% 
(13:611)

3.9382, [0.000]
(3.9240, 3.9525)

-0.0850, [0.500]
(-0.1557, -0.0143)

79921.66
(-10534.34, 170377.67)

1% 
(7:611)

4.5989, [2.0000e-03]
(4.5452, 4.6526)

0.5738, [5.4100e-01]
(0.3403, 0.8074)

1676700 
(1185601, 2167798)

CONCLUSIONS

Imbalanced data has effect on the parameter estimates and classification performance 
of binary logistic regression model with a categorical covariate. The optimal IR for 
different sample size for less biased estimates was determined via a simulation study. It 
was concluded that all samples are affected by imbalanced even for larger sample sizes. 
The effect of imbalanced data on parameter estimates reduces as sample size increases. 
The imbalanced ratio in the response variable will not only affect the parameter estimates, 
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but the p-value and odds- ratio for the covariate as well. Hence, imbalanced data can 
lead to inaccurate findings. There are approaches recommended for handling imbalanced 
problem such as resampling strategies (ROS (Random Oversampling), RUS, (Random 
Undersampling) and SMOTE (Synthetic Minority Oversampling Technique). Future 
simulation studies can investigate which sampling techniques can improve the parameter 
estimates and predictive performance of the binary logistic regression when data is highly 
imbalanced.
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APPENDIX
#fitting the model
set.seed(54321)
ndata <- 100
nrep <- 10000 #set the number of replications
start <- -10 #set initial value of bnot
end <- 10 #set end value for bnot
n <- 1 #set initial value for the loop
perc <- 40 #set the percentage of imbalance

#replication setup
beta0Hat<-rep(NA,nrep) 
beta1Hat<-rep(NA,nrep) 
betanot<-rep(NA,nrep) 
betaone <- 2.08

while(n<=nrep)
{ 
  #set bnot value
  for(i in seq(start,end,0.001))
  {
    x <- rbinom(ndata,1,1/2)
    rx <-chartr(“01”, “AB”, x)
    dummy(x)
    k <-dummy(x)
    linpred <- cbind(1,dummy(x)[,-1])%*% c(i,betaone) #(b)
    pi<-exp(linpred)/(1+exp(linpred))
    ru <- runif(ndata,0,1)
    u<-as.vector(ru) 
    ry <- ifelse((u<=pi),1,0)
    m_y <- (mean(ry)*100)
    if(m_y == perc && n <=nrep)
    {
      dt <-data.frame(x=rx, y=ry) #fit the logistic model
      #print(dt)
      betanot[n]<-i
      mod <- glm(y~x, family=”binomial”, data=dt)
      beta0Hat[n]<-mod$coef[1]
      beta1Hat[n]<-mod$coef[2]
      n <- n + 1
    }
  }
} 

Round1<-round(c(beta0=mean(beta0Hat),beta1Hat=mean(beta1Hat)),3) 
mean(beta1Hat)
ci.b1 <- CI(beta1Hat,ci=0.95)
MSEbeta1Hat <- round(sum((beta1Hat-2.08)^2/nrep),3)
meanb0 <- mean(betanot)
mean(beta0Hat)
ci.b0 <- CI(beta0Hat,ci=0.95)




